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Abstract

A constraint-based data flow analysis is formalised in the specification language of theCoq proof
assistant. This involves defining a dependent type of lattices together with a library of lattice functors
for modular construction of complex abstract domains. Constraints are represented in a way that
allows for both efficient constraint resolution and correctness proof of the analysis with respect to an
operational semantics. The proof of existence of a solution to the constraints is constructive which
means that the extraction mechanism ofCoq provides a provably correct data flow analyser inOcaml
from the proof. The library of lattices and the representation of constraints are defined in an analysis-
independent fashion that provides a basis for a generic framework for proving and extracting static
analysers inCoq.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Static program analysis is a fully automatic technique for proving properties about the
run-time behaviour of a program without actually executing it. The correctness of static
analyses can be proved formally by following the theory of abstract interpretation[9] that
provides a theory for relating two semantic interpretations of the same language. These
strong semantic foundations constitute one of the arguments advanced in favor of static pro-
gram analysis. The implementation of static analyses is usually based on well-understood
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constraint-solving techniques and iterative fixpoint algorithms. In spite of the nice math-
ematical theory of program analysis and the solid algorithmic techniques available one
problematic issue persists,viz., thegapbetween the analysis that is proved correct on paper
and the analyser that actually runs on the machine. While this gap might be small for toy
languages, it becomes important when it comes to real-life languages for which the imple-
mentation and maintenance of program analysis tools become a software engineering task.
To eliminate this gap, we here propose a technique based on theorem proving in construc-
tive logic and the program-as-proofs paradigm. This allows to specify static analyses in a
way that ensures theirwell-formednessand facilitates theircorrectness proof. Moreover,
the constructive nature of the logic means that it is possible to extract, from the proof of
existence of a correct program analysis result, a static analyser that maps any given program
to their static analysis.

The development of the static analyser is done within theCoq proof assistant. Proofs in
Coq are constructive and correspond, via the Curry-Howard isomorphism, to programs in
a functional language with a rich type system. The program extraction mechanism inCoq
provides a tool for automatic translation of these proofs into a functional language with a
simpler type system, namelyOcaml. The extraction mechanism removes those parts of the
proof that are only concerned with proving that the result satisfies its specification without
actually contributing to its construction. In the case of our static analyser, the constructive
part is concerned with calculating a solution to a system of constraints generated from the
program. The other part of the proof establishes that a solution to the constraints is indeed
a correct approximation of the program’s behaviour but does not contribute to the actual
construction of the solution.

The methodology that we present here is generic but we have chosen to develop it in
the concrete setting of a flow analysis for Java Card byte code, presented in Section2. The
motivation for choosing this particular analysis is that it deals with a minimalistic, yet repre-
sentative language with imperative, object-oriented and higher-order features, guaranteeing
that the approach is transferable to a variety of other analyses. The methodology comprises
two phases:
• the modular definition of a library of abstract domains of properties used in the analysis

(Section3). The abstract domains are lattices satisfying a finite-ascending-chains con-
dition which makes it possible to extract a provably correct, generic constraint solver
based on fixpoint iteration;

• a representation of a constraint-based analysis that allows to extract an analyser from the
proof of the existence of a best solution to the constraints, using the program extraction
mechanism available inCoq (Section4) and at the same time allows to prove correctness
of the analysis (Section 5).

Section 6 compares with other work on formalizing the correctness of data flow analyses,
and Section 7 concludes. Appendices A–E contain the formalization of the analyser and
is included as a service to those readers that want to see the details. However, the paper
is written so as to be understandable without having to read these appendices. TheCoq
sources of the development are available online [20].
Notation:Functions whose type depends on the program being analysed will have de-

pendent typeF : (P : Program) → T (P ) with typeT depending onP . We will write FP

for the application ofF to a particular programP . The paper uses a mixture of logic and
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Coq notation. Java Card byte code andCoq functions are written using the teletype font
(e.g., push in Section2 andjoin in Section 3). Lattices and abstract operations on these
as well as their correspondingCoq types are written using the Roman font (e.g., p̂ush in
Section 2 and the domain of abstract stateŝState illustrated in Fig. 2).

A preliminary version of this article was presented at the European Symposium on Pro-
gramming (ESOP) 2004 [5]. The present article is a thoroughly revised version that contains
a more detailed description of the lattice library, the lattice constructors and the proof of
well-foundedness of the lattices, a simplified representation of the constraints generated by
the analysis and a more detailed presentation of the correctness proofs.

2. A static analysis for carmel

The analysis which serves as a basis for our work is a data flow analysis for the Carmel
intermediate representation of Java Card byte code [15] specified using the Flow Logic for-
malism [12] and proved correct on paper with respect to an operational semantics [22]. The
language is a byte code for a stack-oriented machine, much like the Java Card byte code.
Instructions include stack operations, numeric operations, conditionals, object creation and
modification, and method invocation and return. It is given a small-step operational seman-
tics with a state of the form〈〈h, 〈m,pc, l, s〉 :: sf〉〉, whereh is the heap of objects, and
〈m,pc, l, s〉 :: sf is a call stack consisting offramesof the form〈m,pc, l, s〉 where each
frame contains a method namem and a program pointpc within m, a set of local variables
l, and a local operand stacks (see [22] for details). Here and everywhere in the paper, “::”
denotes the “cons” operation on lists.

The transition relation→I describes how an instructionI affects the state. We give as
example the rules defining the instructionspush for pushing a value onto the operand
stack,invokevirtual for calling a virtual method, andreturn for returning from a
virtual method call. The expression instructionAtP (m, pc) denotes the instruction found at
address(m, pc) in the programP .

The rule (1) reads as follows: the instructionpush c at address(m, pc) of state� =
〈〈h, 〈m,pc, l, s〉 :: sf〉〉 has the effect of pushingc on the operand stacks of � and advancing
to the instruction atpc + 1.

instructionAtP (m, pc) = push c

〈〈h, 〈m,pc, l, s〉 :: sf〉〉 →push c 〈〈h, 〈m,pc + 1, l, c :: s〉 :: sf〉〉 , (1)

instructionAtP (m, pc) = invokevirtual M

h(loc) = o m′ = lookUp(M, class(o))

f ′ = 〈
m′,1, V , ε

〉
f ′′ = 〈m,pc, l, s〉

〈〈h, 〈m,pc, l, loc :: V :: s〉 :: sf〉〉 →invokevirtual M 〈〈h, f ′ :: f ′′ :: sf〉〉 , (2)

instructionAtP (m, pc) = return f ′ = 〈
m′, pc′, l′, s′

〉
〈〈h, 〈m,pc, l, v :: s〉 :: f ′ :: sf〉〉 →return 〈〈h, 〈m′, pc′ + 1, l′, v :: s′〉 :: sf〉〉 . (3)
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The rule (2) is slightly more complicated. It reads: forM a method name, the instruction
invokevirtual M at address(m, pc) of state� = 〈〈h, f :: sf〉〉 requires that the first
framef on the call stack of� has an operand stack of the formloc :: V :: s, i.e., it starts
with aheap locationdenoted byloc, followed by a vector of argument valuesV . The actual
method that will be called is determined by thelookUpfunction that searches upwards in the
class hierarchy for the methond nameM, starting from the class of the objecto that resides
in the heaph at the locationloc. The new method, together with its starting pointpc = 1,
its vectorV of actual parameters, and an empty operand stackε, constitute a new framef ′
pushed on top of the call stack of the resulting state�′ = 〈〈h, f ′ :: f ′′ :: sf〉〉. Note, however,
that thesecondframef ′′ in the call stack is also modified: the sequenceloc :: V has been
removed from the operand stack off . This semantics of theinvokevirtual instruction
(which corresponds to the operational definition of the semantics of Java Card), together
with the corresponding rules describing its static analysis, made for the most challenging
part of the correctness proofs (we return to this point in Section 5).

Finally, thereturn rule (3) removes the last frame from the call stack, and transfers the
return valuev (from the top of the last frame’s operand stack) to the operand stack of the
calling framef ′.

2.1. Carmel flow logic

The Carmel Flow Logic defined by Hansen [12] specifies a constraint-based data flow
analysis for Carmel. This analysis computes a safe approximation of the states that can
occur at any program point during execution of a program. This information can then be
used to optimize virtual method calls or verify specific properties on the control flow graph
(seee.g.[4]). Programs may contain virtual method calls, which are dynamically resolved
at execution time; the analysis reflects this behaviour, and attempts to compute a precise
approximation of the called methods and their return values.

Concrete semantic values are either integers or object references. Object references are
abstracted by the classes of the objects they refer to, thus, an abstract value is either a subset
of the set of classes of the programP or a numerical abstraction. This means that the type
V̂alP of abstract values depends on the programP being analysed. This is an example of
a dependency that it is important to make explicit because it ensures the finiteness of the
abstract domain which would otherwise have an infinite number of subsets of classes. The
abstract domain of local variables is another example of an abstract domain that depends
on the actual program being analysed (namely, on the number of local variables of the
program).

For each program point inP , of the form (methodNameP × progCountP ), the local
variables (resp. the operand stack) are abstracted by an array of typêLocalVarP (resp. a
stack of typeŜtackP ) of abstract values. Then, theabstract statedomain:

ŜtateP = ĤeapP ×
(
methodNameP × progCountP → ̂LocalVarP

)
×
(
methodNameP × progCountP → ŜtackP

)
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contains an over-approximation of all possible concrete heaps1 and, for each program point,
an over-approximation of the local variables and of the operand stack. These approxima-
tions are formalized by a relation∼ that connects the concrete domains of the operational
semantics and the abstract domains. In logical terms,s ∼ a if a is a property ofs. In
set-theoretic terms,s ∼ a if s is a member of the set of states described bya. The formal
definition of the∼ relation can be found in the Appendix. Here, we only give an intuitive
description:
• a reference to objecto is approximated by an abstract valueV̂ (written ref (o) ∼ V̂ )

wheneverV̂ is a set of classes that contains the class ofo,
• the vector of local variablesl and operand stacks at a given program address(m, pc),

are approximated pointwise,
• a concrete state〈〈h, 〈m,pc, l, s〉 :: sf 〉〉 is approximated by an abstract state�̂ = (Ĥ , (L̂,

Ŝ)) wheneverh ∼ Ĥ , l ∼ L̂(m, pc), ands ∼ Ŝ(m, pc).
The abstract domains are further described in Section3. An important property of the
approximation relation∼ is themonotonicity with respect to the abstract order. It says
that, for each concrete valuea (be it a heap, a stack, or a vector of local variables) and
abstract valueŝA, Â′ in the corresponding abstract domain, ifa ∼ Â andÂ  Â′ then
a ∼ Â′ holds as well. This property of∼ is proved inCoq once and for all for each concrete
and corresponding abstract domain. The relation∼ is used extensively in Section 5 where
we show how to prove correctness of the analysis inCoq.

The specification of the flow logic consists of a set of inference rules that for each Carmel

instruction define a constraint over an abstract state�̂ ∈ Ŝtate. For̂� =
(
Ĥ , L̂, Ŝ

)
to be

a correct abstraction of programP , �̂ must satisfy the constraints of the instructions ofP .
For example, if apush instruction is present at address(m, pc), the following constraints
should be satisfied:

p̂ush
(
c, Ŝ (m, pc)

)
 Ŝ (m, pc + 1) , (4)

L̂ (m, pc)  L̂ (m, pc + 1) , (5)

wherep̂ush is the abstractpushoperation from the abstract domain of stacks.
The constraints (6) and (7) below are attached to theinvokevirtual instruction. Other

constraints attached to this instruction can be found in the Appendix. Together, the con-
straints (6) and (7) describe the relation between the value of the abstract stackŜ at an
address(m, pc) where a method namedM is called by aninvokevirtual instruction,
and the value of̂S at the address(m, pc + 1) that follows the method’sreturn.

p̂opn
(
Ŝ(m, pc),1+ nbArgs(M)

)
 p̂op

(
Ŝ(m, pc + 1)

)
(6)

∀cl ∈ t̂op
(
Ŝ(m, pc)

)
, ∀m′ ∈ lookUp(M, cl). (7a)

t̂op
(
Ŝ(m′, Ret (m′))

)
 t̂op

(
Ŝ(m, pc + 1)

)
(7b)

1 The precise descriptions of the concrete and abstract heap domains are not essential for understanding the rest
of the paper; they can be found in the Appendix.
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In particular, the constraint (7), explained below, plays a particular role in the correctness
proof described in Section5. Assume that the program performs aninvokevirtual M

instruction at an address(m, pc). The constraint (7) computes both (7a) a set of methods that
contains the method actually called byinvokevirtual, and (7b) an over-approximation
of the return values of all the methods computed at Step (7a).
• Step (7a) simulates the semantics ofinvokevirtual (rule (2)). The rule says that the

method actually called is found by looking up for methods namedM, in the class of
the object referenced by the top of the concrete operand stack when the execution is at
address(m, pc). The constraint (7a,7b) simulates this behaviour at the abstract level: it
searches the class hierarchy for methods calledM starting from all the classes contained

in the corresponding abstract valuêtop
(
Ŝ(m, pc)

)
.

• Step (7b) is performed by simulating the semantics of thereturn instruction. By the
semantics rule (3), the return value of the methodm′ actually called is placed on the
top of the operand stack at address(m, pc + 1). Hence, the constraint (7) imposes that

t̂op
(
Ŝ(m, pc + 1)

)
is greater than the abstract return valueŝtop

(
Ŝ(m′, Ret (m′))

)
of

all methodsm′ computed at Step (7a), whereRet(m′) is a virtual program point used
for collecting abstract results of each methodm′.

Note that Step (7a) implicitly assumes that the abstract valuet̂op
(
Ŝ(m, pc)

)
correctly

approximates the top of the concrete operand stack when execution is at address(m, pc),

i.e., before theinvokevirtual instruction. That is, the abstract valuêtop
(
Ŝ(m, pc)

)
is

a set of classes which contains the class of the objecto that is referenced by the top of the
concrete operand stack when execution is at address(m, pc). This assumption becomes a
proof obligation, to be discharged when proving the correctness of the analysis (cf. Section
5).

3. Constructing abstract domains

In this section we define a data type for lattices(lattice A) , parameterized by the
type of elements of the lattice. We also define higher-order functions which build a lattice
object from other lattice objects. This allows to construct the abstract domains (of local
variables, stacks, etc.) in a compositional fashion from a collection of base abstract domains.
The advantage of this modular technique of combining and building lattices is that we do
not have to prove properties (such as the finite ascending chain condition, see below) for
one big, final lattice, but can do so in a modular fashion for every type of lattice used.
Furthermore, local changes to the lattice structure do not invalidate the overall proof.

A lattice object is a record structure with two families of fields: the functional fields
which are the operations that will remain in the extractedOcaml code, and the logical
fields that contain properties about the lattice.E.g., the fieldjoin is a functional field that
contains the least upper bound operator of the lattice, whereas the fieldacc_property is
a logical field stating that the lattice satisfies the ascending chain condition. The lattice type
is conveniently defined as a record type inCoq, as shown in the followingCoq declaration,
where only details for theorder relation, thejoin operation and the well-foundedness of



62 D. Cachera et al. / Theoretical Computer Science 342 (2005) 56–78

the lattice are given. The well-foundedness field will be explained in detail in Section3.1.
Record Lattice [A: Set]: Type := {
eq : A → A → Prop;
eq_prop : … ;; eq is an equivalence relation

order : A → A → Prop;
order_refl : ∀x, y :A (eq x y) ⇒ (order x y);
order_antisym : ∀x, y :A (order x y) ⇒ (order y x) ⇒ (eq x y);
order_trans : ∀x, y, z :A (order x y) ⇒ (order y z)

⇒ (order x z);

join : A → A → A;
join_bound1 : ∀x, y :A (order x (join x y));
join_bound2 : ∀x, y :A (order y (join x y));
join_least : ∀x, y, z :A (order x z) ⇒ (order y z)

⇒ (order (join x y) z);

eq_dec : A → A → bool
eq_dec_prop : … ;; eq_dec is a correct test of equality

bottom : A;
bottom_prop : … ;; bottom is the least element

top : A;
top_prop : … ;; top is the greatest element

acc_property : (well_founded A ( �x, y :A, ¬(eq y x) ∧(order y x)))
}

In this large object, the properties in the logical fields are only necessary during theCoq
development to ensure the logical coherence of the structure. Hence only the four functional
fields appear in the extractedOcaml lattice type:
type ’a lattic e = { join : (’a → ’a → ’a);

eq_dec : (’a → ’a → bool);
bottom : ’a;
top : ’a }

Declaring a structure ofLattice type will result in a series of proof obligations, one for
each of the logical fields. Of these, the last propertyacc_property is the most difficult
to establish. It expresses that the strict dual order is well-founded, or, in other words, that
there are no infinite, ascending chains. It is the key property used to prove the termination
of the final analyser. Thus, strictly speaking we are dealing with lattices satisfying the finite
ascending chain-condition but we will for convenience use the general term lattice in the
rest of this document.

3.1. Lattice constructors and proof of well-foundedness

The lattices are built from two base lattices using four lattice constructors. These con-
structors are not tied to this particular analysis and can be reused in other contexts.

prodLattice : (Lattice A) → (Lattice B) → (Lattice A ∗ B)
sumLattice : (Lattice A) → (Lattice B) → (Lattice (lift A+B))
stackLattice : (Lattice A) → (Lattice (stack A))
arrayLattice : (max:nat) → (Lattice A) → (Lattice (array max A)).
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Fig. 1. Hasse diagrams of lattices.

The most difficult part of each lattice construction is the proof of preservation of
acc_property (the ascending chain condition), which is essential for defining an anal-
yser that terminates. This is essentially a termination proof which is typically hard to conduct
in a proof assistant because the standard techniques of structural orders or well-chosen mea-
sures do not apply in the case of lattice orders. The proof has to operate directly with the
definition of a well-founded order.We use the standard inductive definition of a well-founded
relation, as used in the built-inCoq predicatewell_founded:

Definition 1. Let A be a type and≺ a binary relation onA.
• Theaccessibilitypredicate is inductively defined by: an elementx of typeA isaccessible

if and only if all the predecessors ofx areaccessible,
• a binary predicate≺ on a typeA iswell-foundedif all the elements ofA are accessible

for ≺.

TheprodLattice function is the standard cartesian product with the pointwise order

(x1, y1) A×B (x2, y2) iff x1 A x2 ∧ y1 B y2

The ascending chain condition of this structure is proved using the fact that the strict reverse
order is a sub-relation of the lexicographic product

(x1, y1)�A×B(x2, y2) �⇒ x1�Ax2 ∨ (x1 =A x2 ∧ y1�By2)

ThesumLattice function builds the separate sum of two latticesA andB according to
the Hasse diagram of Fig.1. Theacc_property proof of this lattice is done following
the different layers of the diagram: first, we prove that the top element is accessible (no
predecessor); then, that all the elements ofA, B are accessible (using the fact that� is
accessible and�A well-founded). Finally, we prove that⊥ is accessible because all its
predecessors are accessible (they are elements ofA ∪ B ∪ {�}).

ThestackLattice constructor builds the lattice of stacks of elements of typeA. In this
lattice, stacks with different sizes are incomparable, according to the Hasse diagram of Fig.
1. The ascending chain condition proof again follows the layers of the Hasse diagram but
is more technical because of the infinite width of the lattice: for the middle layer, that is,
the level of stacks, we use an induction on the stack size. The case of the empty stack is
trivial (no predecessor) and for the induction step, we observe that strict inverse order for
stacks of sizen+1 is a sub-relation of the lexicographic product between(A,�) (which is
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supposed well-founded) and the set of stacks of sizen (which is well-founded for the strict
inverse order by induction hypothesis).

(x1 :: l1)�n+1(x2 :: l2) �⇒ x1�Ax2 ∨ (x1 =A x2 ∧ l1�nl2) .

The fourth constructorarrayLattice builds the type of arrays whose elements live in a
lattice and whose size is bounded by a parametermax, using a pointwise order. Notice that
arrays of different sizes may be comparable whereas this is not the case for the order we
have defined on stacks.

t1  t2 iff ∀i ∈ {1, . . . , max}, t1[i] A t2[i].
The array lattice frequently occurs in flow-sensitive analyses where the number of abstract
variables depends on the program to analyse—these are then conveniently collected in an
array. An efficient implementation of arrays is therefore crucial for obtaining an efficient
extracted code, and we have optimized it by using an efficient tree representation of integer
maps in the spirit of[19]. The crucial ideas of this implementation are
• to represent arrays using binary trees whose nodes are elements of the array,
• to represent indexes using a binary notation; an element at positioni in an array is found

by interpreting the binary notation ofi as the “path” to follow from the root, and
• to have a lazy structure: if a searched node is missing, its value is by convention⊥A,

which allows to represent an array whose elements are all⊥A by an empty leaf.
Theacc_property proof of this lattice is performed by defining an order on trees (a leaf
is smaller that any tree; two nodes are smaller if their heads are in theA relation and if their
descendents are smaller as well), proving its well-foundedness, and, finally, connecting this
order to the array order. It is certainly the most technical of this library. More details on this
proof can be found in the correspondingCoq development.

In addition to these four functors, two base lattices are defined:
• the flat lattice of integer constants (as usede.g., in constant propagation analysis),
• the lattice of finite sets over a subset{0, . . . , max} of integers: again, an efficient im-

plementation is proposed, by encoding sets using boolean arrays, hence based on the
arrayLattice functor and two-valued lattice of Fig.1.
The lattice employed in our particular analysis is given a graphical representation in

Fig. 2 (see Appendix for a mathematical description of the lattice). In this diagram, each
node represents a lattice functor whose parameters are the sons of the node. For the array
functor and the finite-set lattice we write the index domain inside brackets. The modular
construction saves a considerable amount of time and effort,e.g., compared to proving
acc_property for the lattice in Fig. 2 as a whole.

3.2. Iterative constraint solving over lattices

Implementing a static program analyser involves building a constraint solver that can
compute a solution to constraints like the flow logic constraints shown in Section 2 [17].
The problem of solving a set of constraints over a latticeL of abstract values can be
transformed into calculating afixpoint of a monotone function overL—a fixpoint that
for reasons of precision should be as small as possible. More precisely, letf : L → L
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Fig. 2. The lattice of abstract states (each xXP represents the number of distinct xX elements in programP ).

be a monotone function overL. The basic fixpoint operatorlfp takes such a monotone
functionf and computes the least elementx of L verifying f (x) = x. Furthermore, by a
corollary of the Tarski’s Fixed Point Theorem, this element can be iteratively calculated as
the limit of the (stabilizing) sequence(f n(⊥))n∈N. Formally, we define the operatorlfp
of type
(A:Set) → (L:(Lattice A)) → (f:(A →A)) → (monotone L f) →

∃x:A, (e q L x (f x)) ∧ ( ∀y:A (eq L y (f y)) ⇒ (orde r L x y)).

That is,lfp takes four arguments: a data typeA, a latticeL on A, a functionf on A

and a proof thatf is monotone. It returns the least fixed point off . We prove inCoq that
this type is non-empty, which here consists in instantiating the existentially quantifiedx in
the type definition by limn→∞ f n (⊥). The extraction mechanism of programs from proofs
generates forlfp the followingOcaml code, in which the purely logical part of the proof
(i.e., the part concerned with proving that the chosen witness verifies the fixpoint equation)
has been removed:
let lfp L f =

let rec aux x =
if (L.eq_dec x (f x)) then x else aux (f x)

in aux L.bottom
We usex = f (x) as halting condition here, but, as is well known from the fixed point theory,
we could equally well have used the post-fixed point conditionf (x)  x. The equality test
appears to be more efficient for the majority of lattices used in our case study.

In order to use thelfp operator to solve the constraints arising from the Java Card flow
analysis it must be extended to a functionlfp_list that can deal with systems of the form

{fi(x)  x}i=1,...,n

Given a listf1, . . . , fn of monotone functions of typeL → L, the operatorlfp_list
computes the least solutionx of the system by a round-robin iteration strategy in which the
constraints are iterated in increasing order. This computation is implemented by applying
thelfp operator on the monotone functioñfn ◦ · · · ◦ f̃1, wheref̃i (x) = x "fi(x) for every
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indexi. The fact that this computes a solution to the constraint system is formalised in the
type of lfp_list , which is expressed inCoq as follows:

(l: (L → L) list) → ( ∀ f ∈ l, (monotone L f)) →
∃ x:A, ( ∀ f ∈ l, (order L (f x) x)) ∧

( ∀ y:A ( ∀ f ∈ l, (order L (f y) y)) → (order L x y))

(8)

This type means that any application oflfp_list to a list of functionsfi must be ac-
companied by a proof of the monotonicity of eachfi . Read at a proof-theoretic level, it
states that from the proofs of monotonicity of thefi we can prove the existence of a least
common post-fixpoint for all of thefi . This function will be used as a generic constraint
solver in Section4.

4. Constructive constraints

We now turn to the problem of building an analyser that implements the flow analysis
from Section 2. The development will be structured into three phases:
(1) The generation of a set of constraints for each instruction.
(2) The building of an analyseranalyse that computes an abstract state verifying all the

constraints generated for a given program.
(3) The proof of correctness of these constraints wrt. the Carmel semantics.
In the rest of this section, we focus on the constraint generation and resolution (Phases 1
and 2). In Section5 we describe the proof of correctness (Phase 3).

LetP��̂ be the predicate meaning that the abstract state�̂ verifies all constraints of pro-
gramP (this predicate is defined formally in Definition 5 below). Phases 2 and 3 correspond
to proving the following two theorems:

Theorem 2. For each programP , there exists an abstract statê� satisfying all constraints
of P :

∀P : Program, ∃�̂ : ŜtateP . P��̂.

The constructive proof of this theorem provides the analyser itself: the abstract state�̂ we
construct corresponds toanalyse (P ).

Theorem 3. An abstract state verifying all the constraints of a programP is a correct
approximation of the operational semantics ofP :

∀P : Program, �̂ : ŜtateP . P��̂ ⇒ [[P ]] ∼ �̂,

where[[P ]]denotes the set of reachable states of programP and∼ is the correctness relation
between concrete domains of the operational semantics and the abstract domains.

Putting these two theorems together, we get the correctness of the analyser:
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Theorem 4. (Global Correctness)

[[P ]] ∼ analyse (P ).

4.1. Generating the constraints

When formalising the analysis, several representations of the constraints are possible.
• For the correctness proof (Phase 3), it is sufficient to know which order relation is induced

by the constraints on a given set of components of the abstract state. Using an inductive
definition for constraints would naturally provide the necessary predicates for this phase.
Relational constraints written as (4)–(7) could be translated inCoq in a straightforward
manner using inductive definitions.

• On the other hand, the construction of an effective analyser (Phase 2) requires to represent
constraints in a functional form likef (X)  X. This representation is typically difficult
to extract directly from inductive definitions.2

This is why an internal representation of constraints is defined in Phase 1, which allows for
both interpretations and leaves room for reuse in other analyses.

Looking at Formulas (4) and (5) for thepush instruction (Section 2.1), we note that the
representation of constraints must contain the following informations: (i) the components
of the abstract state that are involved in the constraint, (ii) a start addressad1 and an end
addressad2 of the data flow, and (iii) the transformationF that is applied to the data that
flows. For example, constraint (4) only affects the abstract stateŜ, and we havead1 =
pc, ad2 = pc+ 1, andF = �Ŝ.p̂ush(c, Ŝ). This naturally leads to an inductive data type of
the form

type ConstraintP =
|S2S of Address∗Address∗(ŜtackP → ŜtackP )
|L2L of Address∗Address∗( ̂LocalVarP → ̂LocalVarP )
...

(9)

where each constructor represents a type of dependency between components of the ab-
stract state. For example,S2S is a constructor to express a constraint on an abstract stack
which depends on another abstract stack. For the particular analysis discussed here eleven
constructors were employed.

Each constraint, initially acting on a part of the abstract state, is extended to a function
on the whole abstract state, using a mapping

F[[·]] : ConstraintP → (
ŜtateP → ŜtateP

)
for which we prove that it preserves the monotonicity of constraints.E.g., for thepush
instruction

F[[(S2S ad1 ad2 F)]] := �(H,L, S). (H,L, S[ad2 $→ F(S(ad1))]),
F[[(L2L ad1 ad2 F)]] := �(H,L, S). (H,L[ad2 $→ F(L(ad1))], S).

2 Cognoscenti will know that theCoq extraction mechanism is not able to extract computational content of
inductive definition made in the sortProp.
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Based on this definition of the constraints we define a functioncst_gen , which for
each address, returns the list of constraints for the corresponding instruction in a syntax
of the form (9). Continuing with thepush instruction, the corresponding code part is
cst_gen P := �(m,pc)

Case instructionAt P (m,pc) of

| (push c) → (S2S (m,pc) (m,pc+1) �Ŝ. p̂ush
(
ĉ, Ŝ

)
) ::

(L2L (m,pc) (m,pc+1) �L̂. L̂)
…

The well-formedness of this function depends on the actual programP being analysed
because every instance of(m, pc) must be shown to refer to a valid program point ofP . In
a paper-and-pencil proof, this is often left as an implicit hypothesis. In a formal proof how-
ever, this fact must be stated explicitly. In a dependently typed framework, the constraint
generation will thus be parameterised by the program being analysed, yielding a function
cst_gen P which takes as argument an address(m, pc) in the programP and generates
the constraints corresponding to the type of instruction at(m, pc).

We now can formally define what it means for an abstract state�̂ to verify all the con-
straints of a programP .

Definition 5. Let AddrP denote the set of addresses appearing inP :

P��̂ ≡ ∀(m, pc) : AddrP ,∀c ∈ cst_gen P (m, pc). F[[c]](�̂)  �̂

4.2. Construction of the analyser

Recall that the goal is to build an analyser that, given an input program, computes an ab-
stract state that verifies all the constraints of the program. We construct a functionanalyse
of dependent type(P : Program) → ŜtateP which must verify

∀P : Program, P�analyse (P ) (10)

In addition, we want to obtain a non-trivial solution of the constraint system:e.g., an analyser
returning the top element of the lattice for any input is a correct solution, but of poor interest.
We thus add the requirement that our solution is the least solution of the constraint system:

∀P : Program, �̂ : ŜtateP P��̂ ⇒ analyse (P )  �̂. (11)

The constraint resolution tool is based on the generic solverlfp_list (8) described in
Section 3.2. The most difficult part of the work has already be done during the definition of
the solver,i.e., proof of termination and correctness. It is instantiated here with the particular
abstract state lattice of the analysis (depicted in Fig. 2); then,
• For each instruction of programP , the constraints are collected from the lists defined

by cst_gen P (cf. Section4.1).
• Each constraint is translated into a function on abstract states using the mappingF . The

resulting list of functional constraints is calledcollect_func P . As F preserves the
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monotonicity of constraints, we conclude that

∀f ∈ collect_func P f is monotone. (12)

We now have all the ingredients to define the constraint solver:

analyse (P ) = lfp_list (ŜtateP , collect_func P , collect_func_monotone )

wherecollect_func_monotone is the name given to the proof of (12).
By the properties oflfp_list (defined by Formula (8)) we know thatanalyse (P )

is the least abstract statê� in ŜtateP verifying

∀f ∈ collect_func P f (�̂)  �̂. (13)

Thus,analyse (P ) is the least̂� satisfyingP��̂.
We stress that this approach defines a methodology that remains valid for other analyses.

Indeed, all proofs in this section are independent of the system of constraints defined by
the user. They only depend on the different types of constraints introduced as in (9) (S2S,
L2L ,...). As a consequence, modifications to the system of constraints only affect proofs
made about the monotonicity of constraints and during Section 5, rather than the construction
and the correctness of the solver itself.

5. Correctness

Section 4 has shown that an effective solver for the constraints of a program exists. We
now show that the solver is indeed a correct analyser for the program. The analysis is correct
if every abstract statê� satisfying all the constraints of the analysis is an approximation of
the reachable states[[P ]] of the program:

∀P : Program, �̂ : ŜtateP . P��̂ ⇒ [[P ]] ∼ �̂. (14)

The implication (14) has been proved inCoq by well-founded induction on the length of
the program executions. The base step is trivial. The induction step depends on whether the
last instruction isreturn or some other instruction.

5.1. Induction Step: the non-return Instructions

For I an instruction, let→I denote the transition relation ofI (examples of which
have been given in Section 2). The general form of the induction step for any Carmel
instructionI &= return is of the following form.

P��̂ �⇒ ∀�,�′ ∈ [[P ]],� ∼ �̂ ∧ � →I �′ ⇒ �′ ∼ �̂. (15)

That is, if a state� is approximated by an abstract state�̂ that satisfies the constraints
of programP , and if, by performing instructionI , the state� becomes�′, then�′ is
approximated bŷ� as well. We now sketch the proof of (15).
(1) A Coq script unfolds the definition of the transition rule for instructionI .
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(2) Then, another script unfolds the definitions of� ∼ �̂ andP�� and automatically turns
them into hypotheses of the currentCoq goal.3 For example, if�=〈〈h, 〈m,pc, l, s〉::sf〉〉,
�̂ = (Ĥ , L̂, Ŝ), andI = pushc then the following hypotheses are generated:

s ∼ Ŝ(m,pc), p̂ush
(
c, Ŝ (m, pc)

)  Ŝ (m, pc + 1) . (16)

(3) Next, the conclusion of theCoq goal:�′ ∼ �̂ — i.e., the new state�′ is approximated
by the abstract statê� = (Ĥ , L̂, Ŝ) — is split into three subgoals, one for each of the
components(Ĥ , L̂, Ŝ) of �̂.

For I = pushc, the subgoal corresponding to the abstract stackŜ is

c :: s ∼ Ŝ(m,pc+ 1). (17)

(4) Finally, the subgoals generated at Step 3 are proved using the hypotheses generated at
Step 2 and monotonicity of∼with respect to (cf. Section2). ForI = pushc, the only
non-trivial subgoal is represented by Formula (17). It is proved using the fact thatp̂ush is
a correct abstraction of the concretepushoperator “::”,i.e.,c :: s ∼ p̂ush

(
c, Ŝ (m, pc)

)
.

This, together with the hypothesis (16) and the monotonicity of the∼ relation for stacks,
implies the subgoal (17), and the proof is done.

5.2. Induction Step: the Case of thereturn Instruction

Formula (15) above has the general aspect of the induction step in a proof bysimple induc-
tion. That is,if the abstract statê� approximates the concrete state�, then �̂ also correctly
approximates allimmediatesuccessors�′ of �. However, this simple implication could not
be proved for thereturn instruction. This is because the effect of thereturn is simulated
by a constraint (cf. Formula (7)) attached to a different instruction: theinvokevirtual
instruction that called the method now performing thereturn . As seen in Section 2.1,
in order to evaluate which methods may have been called, the constraint (7) must be used
together with the assumption thatthe top of the concrete stack at the address(m, pc)where
the invokevirtual instruction has been performed, is correctly approximated by the

top of the abstract stack̂top
(
Ŝ(m, pc)

)
.

More generally, we need to assume that the concrete state�′′ where theinvokevirtual
instruction has been performed, was correctly approximated by the abstract state�̂ as well.
But �′′ may have been encountered arbitrarily far in the past. Hence, our proof of the in-
duction step for thereturn instruction uses awell-founded inductionhypothesis, which im-
poses that the whole proof of correctness be done by well-founded
induction.

Let [[P ]]<n denote the set of states of programP that are reachable using less thann

instructions. The induction step forI = return is:

∀n ∈ N.[∀�′′ ∈ [[P ]]<n. �′′ ∼ �̂] ⇒ ∀� ∈ [[P ]]<n,∀�′.[ � →I �′ ⇒ �′ ∼ �̂]. (18)

3 This script simulates the standardCoq inversiontactic for inductive datatypes.
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Formula (18) reads:if the abstract statê� approximate all earlier states�′′ (well-founded
induction hypothesis);and � evolves, by performing areturn instruction, into�′; then,
�̂ approximates�′ as well.

The proof of Theorem (18) is substantially more involved than the proofs of Theo-
rems (15). It should be pointed out that this difficulty had been avoided by a previous
pencil-and-paper proof [12], where some details—the actual JavaCard semantics of the
invokevirtual instruction—have been overlooked.

6. Related work

Proving correctness of program analyses is one of the main applications of the theory of
abstract interpretation [9]. However, most of the existing proofs are pencil-and-paper proofs
of analyses (formal specifications) and not mechanised proofs of analysers (implementa-
tions of analyses). The only attempt of formalizing the theory of abstract interpretation
with a proof assistant is that of Monniaux [16] who has built aCoq theory of Galois con-
nections. Prost in his thesis [21] conduces a theoretical study of the relation between type
theory and program analysis, but this work did not lead to an implementation of a concrete
analysis.

Mechanical verification of program processing tools has so far mainly focussed on the
correctness of optimising compilers. Genet et al. [11] use the generic proof assistant PVS
for proving the correctness of algorithms for transforming Java Card byte code into the more
compact CAP format. Similar work was done by Denney [10], using the program extraction
mechanism ofCoq. These optimizations do not involve any sophisticated static analysis.
Lerner et al. [14] have developed Cobalt, a dedicated programming language for writing
C program optimisers and automatically proving their soundness. This language allow to
define statement transformation guarded by predicates on execution traces. To prove the
correctness of the optimization, thesetransformation patternsproduce proof-obligations to
be discharged by an automatic theorem prover. The authors propose an execution engine to
compile Cobalt descriptions in an executable form. The framework allows to write several
optimizations whose correctness is automatically proved by the Simplify theorem prover.
The scope of this work seem currently restricted to intra-procedural analysis with simple
lattices of approximations. Finally, ongoing work in the French research action “Concert”
[8] currently explores the feasibility of developing a realistic certified compiler inCoq.
First results concern the certification of three classical low-level optimizations based on
dataflow analysis and some first experiments in program transformation.

Previous formalizations of static analyses for Java (Card) byte code have all dealt with
intra -procedural type verification. In contrast, we have also shown how to handleinter -
procedural data flow analysis in a natural manner; this is due to the fact that we use the
general setting of Flow Logic [18] and constraint-based analysis. Research on mechanical
verification of the Java byte code verifier includes that of Barthe et al. [2] who have shown
how to formalise the Java Card byte code verification in the proof assistantCoq by iso-
lating the byte code verification in an executable semantics of the language. In [1], they
propose to automate the derivation of a certified verifier from a formalization of the JCVM.
Their approach does not rely on a general theory of static analysis, and is oriented towards



72 D. Cachera et al. / Theoretical Computer Science 342 (2005) 56–78

type verification. Bertot[3] used theCoq system to extract a certified bytecode analyser
specialized for object initialization, but no attention has been paid to the efficiency of the
analyser. In [7], Coglio et al. described their ongoing efforts to implement a bytecode veri-
fier by refinement from the specification of a constraint-solving problem on lattices. Klein
and Nipkow [13] have proved the correctness of a Java byte code verifier using the proof
assistant Isabelle/HOL. In particular their work includes a correctness proof of Kildall’s
iterative workset algorithm for solving data flow equations. They also provide a modular
construction of lattices. The major difference with our approach is the use of abstract data
types that are not implementable as such.

An alternative to theCoq proof extraction mechanism is the B method that has had
considerable industrial success. Casset et al. [6] have extracted a proof-carrying code-based
on-card bytecode verifier for Java Card from a high-level specification by a succession of
refinement steps using the B technique. The development required the proof of thousands
of proof obligations, of which several hundreds could not be dealt with automatically by
the B prover. The B tool could most probably be used for building an analyser like ours
but we doubt that using B would lead to a simpler proof effort. In addition, the program
extraction mechanism in B does not enjoy the same solid foundations as that ofCoq. Hence
our decision to base our development onCoq.

7. Conclusion

The results presented in this article demonstrates that it is feasible to construct a non-
trivial, provably correct data flow analyser using the program extraction mechanism of
constructive logic implemented inCoq. This bridges the gap that often exists between
a paper-specification of an analysis and the analyser that is actually implemented. Our
approach applies to analyses expressed in the constraint-based Flow Logic specification
framework and is hence applicable to a large variety of program analyses for different
language paradigms. We have instantiated it to a data flow analysis for Java Card. To the
best of our knowledge, it is the first formal construction (with proof of correctness) of a
data flow analysis other than the Java byte code verifier.

Formalising a program analyser in a proof assistant imposes a strict discipline that catches
a certain number of bugs, including typing errors in the specification. The present develop-
ment revealed several (innocuous) inaccuracies in the pencil-and-paper specifications and
proof of correctness. Moreover, it pinpointed the adjustment that had been made of the
actual semantics of Java Card in the correctness proof on paper—an adjustment that (as
argued in Section 5.2) made the proof far simpler than a proof done against a more accurate
semantics.

Our methodology makes use of the proof-as-programs paradigm. This paradigm is some-
times presented as developing programs as a by-product of building a constructive proof
interactively and incrementally for an “existential” theorem with a proof assistant. While
this presentation is conceptually simple and appealing, the development of any non-trivial
piece of software (including the present analyser) rather tends to be done by defining (most
of) the function and then showing that it is indeed a witness to the theorem. This technique
has the further advantage that it is simpler to control the efficiency of the resulting program.
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In our case, the provably correct analyser was developed by splitting the correctness proof
into
• an existential proof of a solution to a constraint system from which a constraint solver

can be extracted and,
• a proof that the solutions to the constraint system are correct approximations of the se-

mantics of the analysed program; this proof does not contribute to the actual construction
of the solution.

The methodology includes several steps of varying complexity. The development of the
lattice library required aCoq expert to structure the proofs of the properties associated
with the lattice constructors. Once this library in place, it turned out to be a relatively
straightforward task to prove correctness of the constraint generation and to extend the
constraint generation to instructions others than those originally studied. It took aCoq
neophyte less than 2 months to complete the correctness proof, including the time and
effort needed to understand the general framework of the project. Only basic features of the
tool, those available in any other general-purpose theorem prover, have been employed in
the correctness proof.

The program extraction mechanism has a reputation for producing inefficient programs.
This is not the case with our methodology: the extracted analyser is about 2000 lines
of Ocaml code and takes only a few seconds to analyse 1000 lines of bytecode. The
extracted version ofanalyse has now a type Program→ Ŝtate becauseOcaml does not
have dependent types. As mentioned above, the methodology leaves some possibilities for
programming the resolution mechanism. This, and the inclusion of widening operators, is
one important step forward to be accomplished. Another is further automation of the proof
obligations arising during the development of the analyser in order to make the methodology
the standard way of implementing static analysers.

Appendix A. Syntax

Instruction::= nop
push c

pop
dup
dup2
swap
numop op


stack manipulation

load x

store x

}
local variables manipulation

if pc

goto pc

}
jump

new cl

putfield f

getfield f

heap manipulation

invokevirtual mid

return

}
method call and return
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Appendix B. Semantics

Value = numn n ∈ N

ref r r ∈ Reference
null

Stack= Value∗
LocalVar = Var → Value

Frame= progCount× nameMethod× LocalVar× Stack
CallStack= Frame∗

Object= nameClass× (FieldName→ Value)
Heap= Reference→ Object⊥
State= Heap× CallStack

instructionAtP (m,pc)=nop
〈〈h,〈m,pc,l,s〉::sf 〉〉→nop〈〈h,〈m,pc+1,l,s〉::sf 〉〉

instructionAtP (m,pc)=push c

〈〈h,〈m,pc,l,s〉::sf 〉〉→push c〈〈h,〈m,pc+1,l,c::s〉::sf 〉〉
instructionAtP (m,pc)=pop

〈〈h,〈m,pc,l,v::s〉::sf 〉〉→pop〈〈h,〈m,pc+1,l,s〉::sf 〉〉
instructionAtP (m,pc)=dup

〈〈h,〈m,pc,l,v::s〉::sf 〉〉→dup〈〈h,〈m,pc+1,l,v::v::s〉::sf 〉〉
instructionAtP (m,pc)=dup2

〈〈h,〈m,pc,l,v1::v2::s〉::sf 〉〉→dup2〈〈h,〈m,pc+1,l,v1::v2::v1::v2::s〉::sf 〉〉
instructionAtP (m,pc)=swap

〈〈h,〈m,pc,l,v1::v2::s〉::sf 〉〉→swap〈〈h,〈m,pc+1,l,v2::v1::s〉::sf 〉〉
instructionAtP (m,pc)=numop op

〈〈h,〈m,pc,l,n1::n2::s〉::sf 〉〉→numop op〈〈h,〈m,pc+1,l,[[op]](n1,n2)::s〉::sf 〉〉
instructionAtP (m,pc)=load x

〈〈h,〈m,pc,l,s〉::sf 〉〉→load x 〈〈h,〈m,pc+1,l,l[x]::s〉::sf 〉〉
instructionAtP (m,pc)=store x

〈〈h,〈m,pc,l,v::s〉::sf 〉〉→store x 〈〈h,〈m,pc+1,l[x $→v],s〉::sf 〉〉
instructionAtP (m,pc)=if pc′ n=0

〈〈h,〈m,pc,l,n::s〉::sf 〉〉→if pc′ 〈〈h,〈m,pc′,l,s〉::sf 〉〉
instructionAtP (m,pc)=if pc′ n&=0

〈〈h,〈m,pc,l,n::s〉::sf 〉〉→if pc′ 〈〈h,〈m,pc+1,l,s〉::sf 〉〉
instructionAtP (m,pc)=goto pc′

〈〈h,〈m,pc,l,s〉::sf 〉〉→goto pc′ 〈〈h,〈m,pc′,l,s〉::sf 〉〉
instructionAtP (m, pc) = new cl

∃ c ∈ classes(P )with nameClass(c) = cl (h′, loc) = newObject(cl, h)
〈〈h,〈m,pc,l,s〉::sf 〉〉→new cl〈〈h′,〈m,pc+1,l,loc::s〉::sf 〉〉

instructionAtP (m,pc)=putfield f h(loc)=o o′=o[f $→v]
〈〈h,〈m,pc,l,v::loc::s〉::sf 〉〉→putfield f 〈〈h[loc $→o′],〈m,pc+1,l,s〉::sf 〉〉

instructionAtP (m,pc)=getfield f h(loc)=o

〈〈h,〈m,pc,l,loc::s〉::sf 〉〉→getfield f 〈〈h,〈m,pc+1,l,fieldValue(o,f )::s〉::sf 〉〉
instructionAtP (m, pc) = invokevirtual M

h(loc) = o m′ = lookUp(M, class(o))

f ′ = 〈
m′,1, V , ε

〉
f ′′ = 〈m,pc, l, s〉

〈〈h,〈m,pc,l,loc::V ::s〉::sf〉〉→invokevirtual M 〈〈h,f ′::f ′′::sf〉〉
instructionAtP (m, pc) = return f ′ = 〈

m′, pc′, l′, s′
〉

〈〈h,〈m,pc,l,v::s〉::f ′::sf〉〉→return〈〈h,〈m′,pc′+1,l′,v::s′〉::sf〉〉
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Appendix C. Abstract lattices

N̂um := N�⊥ R̂efP := P(ClassNameP )

V̂alP := (
R̂efP + N̂um

)�
⊥ ŜtackP :=

(
V̂al

∗
P

)�
⊥

̂LocalVarP := VarP → V̂alP ÔbjectP := FieldNameP → V̂alP

ĤeapP := ClassNameP → ÔbjectP

ŜtateP := ĤeapP ×
(
nameMethodP × progCountP → ̂LocalVarP

)
×
(
nameMethodP × progCountP → ŜtackP

)
with

VarP := {x ∈ Var | x appears inP }
FieldNameP := {f ∈ FieldName| f appears inP }
ClassNameP := {cl ∈ ClassName| cl appears inP } .

Appendix D. Correctness relations

n ∼Num N̂ iff N̂ = {n} ∨ N̂ = �
r ∼h

Ref R̂ iff
(
h(r) = o ⇒ {class(o)} Ref R̂

)
v ∼h

Val V̂ iff v = null ∨ V̂ = �Val ∨(
v ∈ Reference∧ V̂ ∈ R̂ef∧ v ∼h

Ref V̂
)
∨(

v ∈ Num∧ V̂ ∈ N̂um∧ v ∼Num V̂
)

v1 :: · · · :: vn ∼h

Stack Ŝ iff Ŝ = �Stack∨(
Ŝ = V̂1 :: · · · :: V̂n∧
v1 ∼h

Val V̂1 ∧ · · · ∧ vn ∼h

Val V̂n

)
l∼h

LocalVarL̂ iff ∀ x ∈ Var, l(x) ∼h
Val L̂ (x)

o ∼h

Object Ô iff ∀ f ∈ FieldName, fieldValue(o, f ) ∼h

Val Ô (f )

h ∼Heap Ĥ iff ∀ r ∈ Reference,

h(r) = o ⇒ o ∼h

ObjectĤ (class(o))

〈〈h, 〈m,pc, l, s〉 :: sf 〉〉 ∼State

(
Ĥ , Ŝ, L̂

)
iff h ∼HeapŜ ∧

l ∼h

LocalVar L̂ (m, pc) ∧
s ∼h

StackŜ (m, pc)
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Appendix E. Constraints

(
Ĥ , L̂, Ŝ

)
�(m, pc) : nop

iff Ŝ (m, pc)  Ŝ (m, pc + 1)

L̂ (m, pc)  L̂ (m, pc + 1)

(
Ĥ , L̂, Ŝ

)
�(m, pc) : pushc

iff p̂ush
(̂
c, Ŝ (m, pc)

)
 Ŝ (m, pc + 1)

L̂ (m, pc)  L̂ (m, pc + 1)(
Ĥ , L̂, Ŝ

)
�(m, pc) : pop

iff p̂op
(
Ŝ (m, pc)

)
 Ŝ (m, pc + 1)

L̂ (m, pc)  L̂ (m, pc + 1)

(
Ĥ , L̂, Ŝ

)
�(m, pc) : numop op

iff b̂inop
(
op, Ŝ (m, pc)

)
 Ŝ (m, pc + 1)

L̂ (m, pc)  L̂ (m, pc + 1)

(
Ĥ , L̂, Ŝ

)
�(m, pc) : dup

iff p̂ush
(
t̂op

(
Ŝ (m, pc)

)
, Ŝ (m, pc)

)
 Ŝ (m, pc + 1)

L̂ (m, pc)  L̂ (m, pc + 1)

(
Ĥ , L̂, Ŝ

)
�(m, pc) : dup2

iff p̂ush
(
t̂op

(
Ŝ (m, pc)

)
, p̂ush

(
t̂op

(
p̂op

(
Ŝ (m, pc)

))
, Ŝ (m, pc)

))
 Ŝ (m, pc + 1)

L̂ (m, pc)  L̂ (m, pc + 1)

(
Ĥ , L̂, Ŝ

)
�(m, pc) : swap

iff p̂ush
(
t̂op

(
p̂op

(
Ŝ (m, pc)

))
, p̂ush

(
t̂op

(
Ŝ (m, pc)

)
, p̂op

(
p̂op

(
Ŝ (m, pc)

))))
 Ŝ (m, pc + 1)

L̂ (m, pc)  L̂ (m, pc + 1)

(
Ĥ , L̂, Ŝ

)
�(m, pc) : load x

iff p̂ush
(
âpply

(
L̂ (m, pc) , x

)
, Ŝ (m, pc)

)
 Ŝ (m, pc + 1)

L̂ (m, pc)  L̂ (m, pc + 1)

(
Ĥ , L̂, Ŝ

)
�(m, pc) : store x

iff p̂op
(
Ŝ (m, pc)

)
 Ŝ (m, pc + 1)

ŝubst
(
L̂ (m, pc) , x, t̂op

(
Ŝ (m, pc)

))
 L̂ (m, pc + 1)

(
Ĥ , L̂, Ŝ

)
�(m, pc) : if pc′

iff t̂est=0

(
t̂op

(
Ŝ (m, pc)

)
, p̂op

(
Ŝ (m, pc)

))
 Ŝ

(
m,pc′

)
t̂est=0

(
t̂op

(
Ŝ (m, pc)

)
, L̂ (m, pc)

)
 L̂

(
m,pc′

)
t̂est&=0

(
t̂op

(
Ŝ (m, pc)

)
, p̂op

(
Ŝ (m, pc)

))
 Ŝ (m, pc + 1)

t̂est&=0

(
t̂op

(
Ŝ (m, pc)

)
, L̂ (m, pc)

)
 L̂ (m, pc + 1)

(
Ĥ , L̂, Ŝ

)
�(m, pc) : new cl

iff p̂ush
(
{cl} , Ŝ (m, pc)

)
 Ŝ (m, pc + 1)

L̂ (m, pc)  L̂ (m, pc + 1)

d̂efault(cl)  âpply
(
Ĥ , cl

)
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(
Ĥ , L̂, Ŝ

)
�(m, pc) : getfield f

iff ∀cl ∈ t̂op
(
Ŝ (m, pc)

)
:

p̂ush
(
âpply

(
âpply

(
Ĥ , cl

)
, f
)
, p̂op

(
Ŝ (m, pc)

))
 Ŝ (m, pc + 1)

L̂ (m, pc)  L̂ (m, pc + 1)(
Ĥ , L̂, Ŝ

)
�(m, pc) : putfield f

iff p̂op
(
p̂op

(
Ŝ (m, pc)

))
 Ŝ (m, pc + 1)

L̂ (m, pc)  L̂ (m, pc + 1)

∀cl ∈ t̂op
(
p̂op

(
Ŝ (m, pc)

))
:

t̂op
(
Ŝ (m, pc)

)
 âpply

(
âpply

(
Ĥ , cl

)
, f
)

(
Ĥ , L̂, Ŝ

)
�(m, pc) : invokevirtualM

iff L̂ (m, pc)  L̂ (m, pc + 1)

p̂opn
(
Ŝ(m, pc),1+ nbArgs(M)

)
 p̂op

(
Ŝ(m, pc + 1)

)
∀cl ∈ t̂op

(
Ŝ(m, pc)

)
,∀m′ ∈ lookUp(M, cl),

t̂op
(
Ŝ(m′,Ret(m′))

)
 t̂op

(
Ŝ(m, pc + 1)

)
{cl} :: p̂opn

(
Ŝ (m, pc) ,nbArgs(M)

)
 L̂

(
m′,1

) [0..n]
n̂il  Ŝ

(
m′,1

)
(
Ĥ , L̂, Ŝ

)
�(m, pc) : return

iff Ŝ (m, pc)  Ŝ (m,Ret(m))
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